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Abstract: Instructional engineering provides methods to conduct the design and adaptation of 
competence development programmes by the combination of diverse learning components (i.e. units of 
learning, learning activities, learning resources and learning services). It occurs through an established 
process workflow in which models with diverse levels of abstraction are used to depict such learning 
components. This paper presents a model-driven generative method used to adapt and reuse a set of 
learning components for the delivery of a competence development programme concerned with a 
given learning objective and which serves for a specific instructional context. 
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1         Introduction 
Competence Development Programmes (CDPs) are collections of learning activities and units, which 
are used to increase the overall effective performance of a learner within a certain task. CDPs can be 
facilitated by shared, self-organized networks of IMS LD-based Units of Learning (UoL), which rely 
on diverse web-based technologies to be realised (Herder et al., 2006). In the research of how learning 
networks can be specified, built, and tailored to suit an individual learner's needs, several adaptive 
web-based educational systems have been studied (Brusilovsky, 2003). Such systems aim at 
intelligently incorporating and performing certain activities traditionally executed by human teachers. 
Nonetheless, adaptations occurring during learning time must be designed beforehand, which involves 
the complexity of building and mixing models of the goals, preferences, and knowledge of the learners. 

Although the design of an adaptable CDP is difficult to be completely automated, a computer-aided 
method can help in designing and adapting the programme. Such methods are a part of Instructional 
Engineering (IE) discipline (Paquette, 2004), which aims at increasing the degree of automation of the 
instructional design process. This paper describes a generative IE method used to create and adapt 
CDPs. Such adaptations can be realised in design-time (i.e. before the actual programme begins 
executing) or in learning-time (i.e. after the beginning), which complicates the instructional design 
task. 

When engineering a CDP it is not always possible to know in detail its structure and all of its 
components beforehand. Some details cannot be completely established before the learning process 
begins. Regardless of how carefully a CDP has been defined, its actual application is all but rigid, since 
it is difficult to foresee all the potential reactions from learners. In practice, learning designers take the 
learning design as a starting point not to be followed blindly. They usually observe the evolution of 
learners, and afterwards introduce the appropriate adaptations to reinforce some aspects of the CDP, as 
long as the achievement of the original learning objectives is guaranteed. Most IE methods are used to 
define learning programmes from scratch. This paper explains a generative IE method that also 
facilitates adapting an existing CDP from further requirements stated by the instructional engineer. 

The rest of this paper is structured as follows: the remainder of this section describes the related work 
and methodological issues of designing and adapting CDPs and UoLs. Then, section 2 explains a 
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generative IE method, which is put into the framework of current model-driven, generative engineering 
practices. Section 3 includes a case study on how the IE method has been applied to adapting a UoL to 
convert it to a simple CDP. Finally, section 4 ends up with some conclusions and future work. 

1.1       Related work 
Instructional Engineering is defined as a method that supports the analysis, design and delivery 
planning of learning systems, integrating the concepts, processes and principles of instructional design, 
software engineering and cognitive engineering (Paquette, 2004). The discipline of IE has its roots in 
Tennyson and Barro (1995), who described earlier attempts to automate instructional design. More 
recently, Sloep, Hummel and Manderveld (2005) have claimed learning design procedures to be 
similar to those of the traditional software engineering life cycle - namely analysis, design, 
development, implementation and evaluation. Early IE methods, such as the Courseware Engineering 
Methodology (CEM), the Méthode d'Ingénierie des Systèmes de Apprentissage (MISA) and the 
Instructional Software Development Process (ISDP) organize the work in iterative and incremental 
development cycles, as they are heavily influenced by software engineering practices. First, the CEM 
method (Uden, 2003) divides the courseware engineering life cycle into three processes (i.e. inception, 
construction and evaluation), which unfold into four main phases (i.e. analysis, design, development 
and evaluation). The artefacts obtained are classified into four models (i.e. pedagogical, conceptual, 
navigational and interface model). Second, the MISA method (Paquette, Aubin and Crevier, 1999) 
manages the production of a learning system through six phases (i.e. definition, preliminary analysis, 
architecture, conception, realization and validation, and dissemination), which are developed along 
four orthogonal axes (i.e. knowledge model, pedagogical model, media model, and delivery model). 
Thirdly, the ISDP method (Demirors et al., 2000) is an adaptation of the ISO/IEC 12207 software life 
cycle process, which defines a core set of activities used to transform requirements into a consistent set 
of artefacts that represents an instructional product (i.e. requirements specification, design, 
implementation and testing, and project management). These core processes define a standard set of 
intermediate products to be delivered. 

All the methods described above are based on the analysis of the learning system from different 
perspectives and levels of abstraction, which constitute a widely used technique to manage complexity. 
They also define a number of models to depict different aspects of the learning system design. 
Nevertheless, the treatment of dependencies between cross-cutting, orthogonal views (or models) of 
the learning system is rather limited. 

1.2       Methodological issues 
Designers of a CDP have the goal of defining a programme that satisfies a certain learning need and 
produce some learning outcomes. They provide the input to the IE process showing different 
abstraction levels, targeted on different contexts, and affected by different concerns, which are 
described as follows: 

•         An instructional designer can specify parts of the desired CDP with a different level of 
abstraction from other designers. For instance, an instructor can state the need to design a "90-
minute long, 60-item, multiple-choice, multiple-answer quiz assessment" activity or she may 
want to design a "long and difficult assessment." Furthermore, she can select the questions in 
the quiz by hand, according to their difficulty level, or use a computer-assisted quiz 
composition tool to do that task. 

•         Although reusability is a very desirable goal (Polsani, 2003), instructional designers should 
not try to design universally valid CDPs. Instead, the programmes should be targeted to a 
specific context. A major difficulty in achieving reusability in CDPs is that the programmes 
are aimed for functioning in different learning contexts (Koper, 2003). For instance, the design 
of a course on Descriptive Statistics should not be the same for Electronic Engineering and for 
Social Sciences' students. After that course is designed, could it work also for Computer 
Science studies? Such context-related issues have to be considered. 
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•         Rarely the learning goal of a CDP is unique, but it usually consists of a number of goals. In 
addition, the attainment of these goals can be required with different accuracy levels. Both the 
extension of learning goals (i.e. the number of goals) and their intensity (i.e. the level of 
attainment) make up the instructional concern of a designer. For instance, a project-oriented 
course on software engineering can be mainly concerned with learning the planning and 
estimation procedures, or it can be focused only on managing the development method and 
tools. Yet, both goals can be expected at the same time but with different levels of fulfilment 
for each one. Concerns are usually structured as taxonomies of learning objectives, which can 
yield quite different programmes. 

Abstraction level issues are usually managed in common IE methods by defining a number of design 
models, which are targeted to different roles and development stages, as described in the previous 
section. Some IE approaches turn to the aspect-oriented paradigm and represent these issues as cross-
cutting concerns. For instance, aspect-oriented techniques have been purported to re-engineer 
educational material (Pankratius and Vossen, 2005). The separation of concerns principle suggests 
considering multiple perspectives on the engineered material. This helps in solving dependencies and 
overlaps between the orthogonal models of a systematic IE method. Nonetheless, dealing with a set of 
design models entails further questions about how and when merging them to yield the final CDP. 
Furthermore, it is advisable that the resolution of such dependencies be carried out as early as possible 
in the method, as proposed by Díez, Fernández and Dodero (2006), who describe how model-driven 
and aspect-oriented analysis can be combined to define an effective learning analysis method. 

To manage the context issue, learning design patterns (McAndrew, Goodyear and Dalziel, 2006) are 
the mainstream trend. Patterns are parameterized templates that can be adapted to the concrete learning 
context. Yet, some open issues here are: how to select the adequate learning design pattern(s); how to 
merge or combine the patterns; and if such patterns can be actually combined in the desired context 
(Hernández-Leo et al., 2006a). 

Finally, regarding modelling the instructional concerns, scarce approaches have been provided; and 
most of them have been based on the pattern concept as well. Although Derntl and Botturi (2006) use a 
goal-based approach to structure instructional requirements, they focus on pattern identification, 
application and maintenance. They do not aim at facilitating the adaptation of an instructional 
requirement that is quite similar to desired one, but not completely satisfactory - for instance, a project-
oriented course which is in a repository of readily available CDPs can be concerned with learning 
software engineering development methods, but not learning any tool; and learning of a given tool is 
now required as an additional goal in the adapted CDP. 

2         Model-driven generative adaptation 
Complete automation of the design and adaptation of a CDP is a difficult task. Nevertheless, 
instructional engineering methods can help in designing and adapting an originally available 
programme. This section describes a generative instructional engineering method, which considers the 
methodological issues described above along the engineering lifecycle. As a first step, a generative 
domain model is defined to serve as the framework of the method. Next, the method itself is explained. 

2.1       Generative domain model 
Design knowledge affecting a CDP can be organized into a network of related domains (e.g. technical, 
didactic, presentation, etc.) Each of these domains must be expressed in a specific, high-level domain 
language (e.g. web-based application languages, pedagogic design patterns, usability descriptions, etc.) 
and also comply with a certain meta-model. The CDP is defined with a set of high-level specifications 
describing different aspects of design. The generative IE process encourages the efficient use of system 
models by engineering families of learning components and services that eventually become part of 
one CDP. The members of the family are generated based on a common generative domain model, i.e. 
a model of system family consisting of three elements, namely (1) a means of specifying family 
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members; (2) the components from which each member can be assembled; and (3) the configuration 
knowledge used to generate a finished member from higher-level specifications. 

Family members are concrete learning components or services. They are not templates or patterns, but 
final learning design solutions, which can range from ready-to-run UoLs to complete chunks of 
different granularity (Hernández-Leo et al., 2006b). A higher-level specification of these family 
members must be defined. These are provided by feature models, which are structured collections of 
eligible features, including formalized definitions of features, composition rules (i.e. indication of 
which feature combinations are valid, including requirements and exclusiveness); and rationales for 
features (i.e. reasons for choosing or not a given feature.) The annotation of features with rationales 
when these are applied to a certain design is essential to feed and grow up the configuration knowledge 
base. Moreover, feature models allow building service-level agreements on a CDP, so that instructional 
designers (or even learners) can adapt the required level of quality for a learning service, and this can 
be traced from the initial learning objectives to final assessments. 

Second, components that make up a CDP consist of available learning designs, units of learning and 
learning services (Koper, 2003), which must be found and assembled. A way to find such components 
is annotating them with ontological representations of competences (Dodero, Sánchez-Alonso and 
Frosch-Wilke, 2007). Another way is explicitly capturing the required adaptations which occur after 
the deployment of a CDP, and packing them as adaptation pokes (Zarraonandia, Dodero and 
Fernandez, 2006). These can be stored separately from other components, annotated, and afterwards 
applied to similar learning design situations. In this paper we have used the latter approach. 

The selection of features that make up a component is part of the adaptation process, which can be 
realised during learning time as well as in design time. For instance, the instructional engineer can 
decide on an initial feature model to design a CDP positioning service, whilst deferring the 
consideration of features that affect the CDP navigation service until the learning-time. 

2.2       Model-driven development 
To generate a finished member from a number of member specifications, we use a model-driven 
development approach. We have considered the development layers of Robson, Collier and 
Muramatsu. (2004) for designing reusable collections of digital resources: 

•         Pedagogy: how a digital learning resource is used as part of a learning strategy or instructional 
design. Models of this layer usually include the pedagogical method, the behavioural or 
constructive features of learning, the cognitive level of learning objectives (e.g. expressed 
according to Bloom's cognitive taxonomy) and their traceability, the effort or time required to 
run the programme, etc. The underpinning meta-models are usually built by ontological 
engineering (Mizoguchi and Bourdeau, 2000), such as, for instance, Murray (1996) and 
Leidig's (2001) educational ontologies. 

•         Structure: how a digital learning resource is structured into learning components, and how 
these are connected between them. In this layer, IMS or other specifications that define the 
structuring of contents, either static (e.g. IMS Content Packaging) or navigational (e.g. IMS 
Simple Sequencing or IMS LD level B features) have to be taken into account as meta-models.  

•         Content: the information that is contained in the learning resources and that is intended to 
affect a change in cognitive state. This layer considers learning resources as providers of 
specific knowledge on a certain subject or discipline. Although the issues to be modelled in 
this layer are subject-specific, reusability can be improved if meta-models are provided as a 
combination of upper ontologies and domain-specific ontologies (Niles and Pease, 2001). 

•         Presentation: how a resource is rendered and what interactive elements will be used to render 
it. That involves how well users respond to the user interface and usability features of the 
resources, specially related to time on task, accuracy, recall, and emotional response. Feature-
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based meta-models have been used to capture such usability characteristics (Fey, Fajta and 
Boros, 2002). 

•         Context: cultural, academic, organizational, and other factors that are needed to properly 
interpret a digital learning resource. Ontologies have been also used as the meta-model to 
explicitly represent the actual context of use of a learning resource in a learning design 
(Jovanović et al., 2006). 

Our model-driven development framework is focused in the first four layers. These make up the 
concerns of the grid depicted in Table 1, which categorizes the software development models or 
artefacts, according to Greenfield and Short (2004). Columns in the table define the development 
layers, while each row defines a level of abstraction. Each cell depicts different kinds of models as the 
potential sources for the development artefacts. The context layer has not been included in the table, 
since it is rather complex and should be considered separately. Although other layers could have been 
considered, they are general enough to include other dimensions that could have been taken into 
account when designing a CDP. 

  Pedagogy Structure Content Presentation 

Higher 
abstraction 

level 
Narrative 
Use cases 

UoL structure 
CDP services 

Knowledge 
Competences 

Attitudes 

web 
mobile 

digital TV 
Lower 

abstraction 
level 

Didactic method 
Role definition 

Activities 
Environments 

Role play 

Related 
concepts and 

skills 

Supporting 
technologies 

Table 1.  A grid for categorizing instructional engineering artefacts 

The generative scheme used to transform between models in each cell is depicted in Fig. 1. A set of 
independent models are gradually merged, mapped and transformed in order to obtain another model. 
In the scheme, models A and B are conformed to respective meta-models. The output model C 
corresponds to the learning component whose generation is intended. Model C is conformed to an 
either explicit or implicit meta-model resulting from the combination of A and B meta-models. For 
instance, in the higher-level row, a CDP navigation service (i.e. a model conformed to a structure 
meta-model) and a web-based navigational model (i.e. a model conformed to a presentation meta-
model) can be mapped and transformed to generate a web-based implementation of the service (i.e. a 
model conformed to a non-explicit meta-model resulting from combining structure and presentation 
ones). In further stages of the development, this web-based implementation can be transformed from 
the higher to a lower level of abstraction - for instance, by implementing navigation among activities 
with AJAX and Java Struts. These steps can be iteratively taken along the engineering lifecycle in 
order to generate a learning component that eventually complies with several meta-models. 

 
Figure 1. Model-driven generation of a software development artefact 
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Nevertheless, models are not completely independent and unrelated from each other. For that reason, 
model mappings and transformations are not straightforward. Although transformations are undertaken 
by metadata-based transformations, they cannot be carried out without the help of the learning 
designer. 

Having all these rationales in mind, the generative IE method can be summarized in the following 
iterative phases, namely the instructional engineering workflow: 

•         The analysis phase aims at defining an anticipated view of the learning system to be built, in 
order to have a better understanding of the context in which it will be used and to optimise the 
development process. Then, an analysis model is produced. 

•         The design phase translates the delivered analysis model into a number of abstract 
components (i.e. learning components and services) that guarantee the service-level agreement 
derived from the analysis phase. 

•         The implementation phase builds the concrete learning components and services to fulfil the 
abstract components enclosed in the design model. 

•         The evaluation phase closes the iteration, compiles the design rationales occurred during the 
previous phases, and annotates the components for further improvements of the method. 

Verification and validation are realized along analysis and design phases. These are not a separate 
phase, but they are orthogonally included into analysis and design activities. When verification and 
validation tasks are done during the analysis phase, they may affect either the goal selection or the 
configuration of features from the feature model. If goals or features selected would lead to conflicting 
or non-compatible configurations, feature restrictions could be applied. This can be done through basic 
feature modelling, which can be thought of as a feature hierarchy plus a propositional formula, as 
described by Czarnecki and Kim (2005). An alternative form is using rich ontology modelling, for 
which feature models are only views on ontologies (Czarnecki, Kim and Kalleberg, 2006). 

3         Case study: generative adaptation of a unit of learning 
In the following, the instructional engineering method is exemplified and applied to adapting an 
original CDP that was designed as a simple unit of learning, which consists of two activities, as shown 
in Fig. 2. In this case study, an available CDP is adapted to assist regular students in enrolling to a 
learning organization, as well as they acquire a set of basic knowledge competences. 

 
Figure 2. Original UoL consisting of two sequenced learning activities; this UoL will be adapted 

to build a simple CDP which includes a number of assessments and a monitoring service 

Although the actual case is more detailed than what is depicted here, all the details of the model-based 
development process are mot shown. In summary, the following meta-models have been used: for the 
analysis phase, a CDP feature model is used, which covers structure and content development layers; 
for the learning design phase, IMS LD and an IMS LD-based ontology (Amorim et al., 2006) are used, 
extending across the two abstraction levels of structure and content layers; and for lower-level 
implementation, an specific adaptation model (Zarraonandia et al., 2006] was used to express 
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adaptations to the learning components selected in the design stage. For the sake of illustrating the IE 
method steps, in the following we will focus on describing how the original CDP is adapted through a 
full iteration of the workflow. 

3.1       Learning analysis 
First, a number of potential goals must be provided at the beginning of the analysis phase. For 
simplicity, we considered only three goals for a student, namely: enrolling as a newcomer, engaging in 
the university, and becoming an assistant student. The selection of one goal triggers the analysis. Fig. 3 
depicts the feature model used for the specification of CDP family members in this phase. The CDP 
feature model includes mandatory features (e.g. competenceDevelopmentProgramme, 
competence, assessmentService, navigationService, and 
learnerSupportService); sub-features (e.g. level); optional features (e.g. 
positioningService); exclusive-or feature groups (e.g. knowledgeElement, attitude 
and skill) and non-exclusive (e.g. portfolio, formative and summative); and feature 
configurations. For details on feature modelling, see Czarnecki and Antkiewicz (2005). Some features 
derive from the main supporting component services of a CDP ―namely positioning, navigation, 
assessment and learner support (Herder et al., 2006)―.  

 
Figure 3: A feature model for the specification of CDP family members 

Aftterwards, goals are translated into feature configurations, which are groups of features commonly 
selected altogether. For instance, the enrolAsNewcomer goal is mapped to the feature configuration 
number 4 (see Fig. 4), which consists of the following elements: a simple competence of type 
knowledge; both formative and summative assessments required for each learning activity; 
positioning service required; navigation service allowed with any option; and tutor-based learner 
support service. Although we have omitted details about competence level and other sub-features of 
competence, they could have been easily taken into account in the analysis as well -for instance, to 
determine the level of fulfilment required for the feature. A similar process can be also made on a 
learning activity basis to refine the number of assessments introduced; in our case, all activities are 
undergone to formative assessments. 
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Figure 4. A configuration of CDP to achieve the goal enrolAsNewcomer 

3.2       Learning design 
The CDP that is being adapted should assist students to achieve the goal enrolAsNewcomer with a set 
of competences provided by the feature configuration selected in the analysis phase. The learning 
design phase involves mapping these abstract features to available units of learning, learning activities 
or learning services ―namely, learning design components―, which are suitable to provide the 
required adaptation. Such learning design components are implemented as adaptation pokes, which are 
simple, run-time adaptations that can be applied to an EML-based existing unit of learning to modify 
or adapt some behaviours of the UoL (Zarraonandia et al., 2006). This process is supervised by the 
learning designer, who can observe the execution of the current version of the UoL, and define an 
appropriate number of adaptation pokes. In the example, adaptation pokes are combined to define more 
complex adaptations according to the feature configuration of Fig. 4. 

The feature configuration provides two pokes that add formative and summative assessments to each 
activity [1]; one poke that adds a pre-test evaluation to position students in the course; and one poke 
that adds a monitor service to let the tutor supervise students' activities. These adaptations are 
described as follows: 
<poke id='add_assess_formative'> 
  <actions> 
    <insertion> 
        <idElement-Ref ref='formative-assessment-activity-1'/> 
        <ParentElement-Ref ref='AVLTrees-Activity' pos='2' /> 
    </insertion> 
    <insertion> 
        <idElement-Ref ref='formative-assessment-activity-2'/> 
        <ParentElement-Ref ref='AVLTrees-Activity' pos='last()' /> 
    </insertion> 
  </actions> 
</poke> 

<poke id='add_assess_summative'> 
  <actions> 
    <insertion> 
        <idElement-Ref ref='summative-assessment-activity-1'/> 
        <ParentElement-Ref ref='AVLTrees-Activity' pos='last()'/> 
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    </insertion>     
  </actions> 
</poke> 

<poke id='add_positioning_service'> 
  <actions> 
    <insertion> 
        <idElement-Ref ref='pretest-assessment-activity-1'/> 
        <ParentElement-Ref ref='AVLTrees-Activity' pos='first()'/> 
    </insertion> 
  </actions> 
</poke> 

The following IMS-LD example depicts the part of the UoL content before the adaptation poke was 
applied, while Fig. 5 shows the required structure of the activity. 
<imsld:activity-structure identifier="AVLTrees-Activity" sort="as-is"  
                                               structure-type ="sequence"> 
   <imsld:title>AVL Trees</imsld:title> 
   <imsld:learning-activity-ref ref="Basics-Activity" /> 
   <imsld:learning-activity-ref ref="Algorithms-Activity" /> 
</imsld:activity-structure > 

 
Figure 5. Definitive UoL consisting of several learning and assessments activities. 

The next activity demonstrates the result of adapting the UoL to make up the CDP. 

<imsld:activity-structure identifier="AVLTrees-Activity" sort="as-is"  
                                               structure-type ="sequence"> 
   <imsld:title>AVL Trees</imsld:title> 
   <imsld:learning-activity-ref ref="PreTest-Assesment" /> 
   <imsld:learning-activity-ref ref="Basics-Activity" /> 
   <imsld:learning-activity-ref ref="Formative-Assesment1" /> 
   <imsld:learning-activity-ref ref="Algorithms-Activity" /> 
   <imsld:learning-activity-ref ref="Formative-Assesment2" /> 
   <imsld:learning-activity-ref ref="Sumative-Assesment" /> 
</imsld:activity-structure > 

On the other hand, the following adaptation poke is used to add the tutor-based monitoring service that 
was required in the analysis phase: 
<poke id='add_tutor_monitor'> 
  <actions> 
    <insertion> 
        <idElement-Ref ref='tutor-monitor-service-1'/> 
        <ParentElement-Ref ref='//imsld:environment[@id="general"]' 



http://jime.open.ac.uk/2007/04 

 10

            pos='last()' /> 
    </insertion> 
  </actions> 
</poke> 

There are several possibilities of adding the tutor-based monitor service. The first possibility applies 
when the original UoL does only contain learning activities. Then, it is desirable to add a new tutor 
role and a role-part that plays a new support activity within the new environment containing the 
monitor service. However, if the original UoL already contains a tutor role and an adequate support 
activity, they can be selected and adapted by the poke (for instance, by adding a new environment to 
the support activity that contains the monitor service). Finally, if a tutor role, a support activity, and an 
adequate environment are readily available in the UoL, the adaptation can be only adding the monitor 
service to the environment. 

3.3       Verification and validation 
Verification and validation activities are orthogonally included into analysis and design phases. In our 
case study, basic feature modelling techniques have been applied during analysis, as well as ontology 
modelling has been carried out during design. During the design phase, an IMS-LD ontology (Amorim 
et al., 2006) has been used to verify and validate adaptation poke configurations. For instance, there is 
a conflicting issue between the pokes add_assess_formative and add_assess_summative, 
because they partly include the same question items. In addition, add_assess_summative is used 
to evaluate concepts which are not evaluated by add_assess_formative. Such conflicts could 
not be solved in analysis time, since the concrete components (i.e. question items) to be eventually 
integrated into the CDP were not known until design. All these activities are not automatic, but 
supervised by the instructional engineer. According to the feedback provided by the IMS LD ontology-
based validator, the instructional engineer can iteratively refine the adaptation pokes and eventually 
decide which ones are valid and therefore incorporated to the CDP (Zarraonandia et al., 2007). 

3.4       Learning implementation phase 
The result of the design phase was the set of required adaptation components (i.e. units of learning, 
learning activities, learning objects and learning services) considered to be helpful in acquiring the 
desired competences. Should these exemplars exist in the repository, the transition from design to 
implementation would be straightforward. For instance, to implement navigation in the CDP design 
model when the selfDirected attribute is selected under navigationService, an IMS Simple 
Sequencing navigational service can be provided (Icodeon, 2007). Similarly, to implement the tutoring 
facility required by the tutor-based learner support feature, an IMS-LD-based monitor service chunk 
(Hernández-Leo et al., 2006b) can be used. Furthermore, such learning components and services can 
be easily replaced by others that provide the same function, which turns out as the task of the 
implementation phase. 

However, sometimes there can be no suitable learning design components for the desired configuration 
of features, so new learning artefacts should have to be generated. Then, a configuration of LD 
templates or patterns must be provided to adapt the UoL (Hernández-Leo et al., 2006a). Such 
templates are abstract LD exemplars that should be completed thereafter, during the implementation 
phase. The goal is to obtain ready-to-run units of learning that build up the eventual CDP. In our 
example we will omit this step and suppose that suitable LD components were found after the design 
phase. 

The components that eventually form the CDP adaptation are used to augment the repository of 
available learning components. These can be annotated with design rationales, mainly inferred from 
the learning analysis and design phases. 
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4         Conclusions and future work 
Instructional Engineering methods are commonly used for design-time conception and adaptation of 
instructional material, such as units of learning, learning designs and competence development 
programmes. A generative, model-driven IE method is described in this paper and used to adapt a unit 
of learning to transform it into a CDPs. The generative framework consists of a feature model, a set of 
learning components and a meta-model-based transformational approach to eventually generate the 
learning artefact. Feature models are used to abstractly specify the desired adaptation, as well as to 
control allowed configurations of learning components. Since generative methods aim at modelling 
system families instead of individual systems, our method can be applied to adapt a given member of a 
learning system family, such as a CDP. 

The generative IE method is based on analysing the CDP from different levels of abstraction, namely 
learning analysis, design, implementation and evaluation. For each phase, different models (i.e. the 
CDP feature model, the IMS-LD model, and the adaptation model) are used to represent the CDP with 
different abstraction levels. The distinction between learning analysis and design as separate phases of 
the method takes a step ahead in considering the possible dependencies between the CDP concerns. In 
software engineering methods, the resolution of design conflicts should be carried out as early as 
possible in the method. This is the aim of the feature modelling carried out in the learning analysis 
phase. 

The generative framework defined in this paper has driven the transformations needed to map the 
abstract features into adaptations to the runnable UoL. As a first step to face up the learning context 
issues, configurations of feature model and IMS-LD ontology have been respectively used to 
determine what combinations of adaptations could be applied during analysis and design phases for a 
specific learning context. Nevertheless, the current selection of adaptations is far from automatic. The 
effort of automating the method outweighs the benefits if the CDP is not intended to be adapted for 
reuse in forthcoming learning settings, or if the learning process span is reduced. But if we often have 
the opportunity to reuse adapted versions of a CDP, or if a life-long learning process is needed, then 
the effort of automation is worth it. Nevertheless, it is not realistic to consider automation of the 
development process as the main purpose of the method. The ultimate goal is achieving the highest 
level of automation that is possible, whereas the generative approach acknowledges the possibility of 
different levels of automation. In spite of this, if we had considered the generative method as a process 
in which the computer automatically adapts a learning programme, and whose result must have a 
pedagogical sense, it becomes clear that the computer should have access to information about the 
design rationales used in adapting the CDP. These rationales are traced by the method as "after what 
goal and feature configuration did the designer choose this adaptation poke?" and are explicitly 
represented along with the outcome of the process. 

Obtaining CDPs that are actually reusable for a number of learning contexts requires taking a step 
further and organizing adaptations as a system of patterns, whose application can be automated. This 
organization would help to select the adequate learning design pattern(s) and successfully manage their 
combination for a specific learning context, which is the first focus for our future work. A second point 
of further work is about the evaluation of adaptations. On the one hand, feature models enable experts 
or automated systems to analyse and find out in design time which component fails for a particularly 
desired CDP, or even measure which design decisions are more valuable for your learning assets. On 
the other hand, the adaptation model can be used for the run-time evaluation of the introduced 
adaptations. Although such capabilities have not been tested in the described case study, further work 
is required to feed the IE process with empiric evidences for the need of contextual adaptations to real 
learning situations. 
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Footnotes 
[1] Traditionally, Spanish Universities' curricula only provided one final evaluation for each 4-month 
course. Nowadays, this is being changed, due to the European policies for higher education, to a 
continuous assessment scheme that eventually guides to achieving Bologna's declaration objectives. 
This change is being implemented gradually, first on newcomers' courses. 


